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ABSTRACT

Locating human actions in videos is challenging because of
the complexity and variability of human motions, as well as
of the amount of video data to be searched. We propose a
method that detects and locates a set of actions in a video
database by taking into account their temporal structure at the
frame level. While other methods aggregate frames into ac-
tion parts, we leverage the complementarity between aggre-
gation and frame level comparison of sequences. Combining
these two techniques in a cascade, we aim to address large
scale retrieval. Evaluation on popular datasets show state of
the art results, as well as efficient detection and low storage
requirements.

Index Terms— Action Localization, Tracklets, Cascade,
Global Alignment, Time Warp

1. INTRODUCTION

Action detection is an important problem in computer vision,
with many applications in video surveillance, in audiovisual
content indexing and retrieval, and in human-computer inter-
faces. So-called intermediate level actions are composed of
a series of atomic parts and can vary in complexity, e.g.from
‘smoking’ to ‘pole vaulting’. Solutions vary from the most
simple—averaging all descriptions in a temporal window—to
weighted temporal segmentation [1] and tree-like structures
[2]. Complex background, variability in point of view, occlu-
sions and low video quality also pose a challenge for action
detection in video.

We aim to perform action-based indexing of large-scale
cultural video databases in order to support broad access to
such content. For this, our primary focus is on the scalable de-
tection of intermediate level actions. The method put forward
in this work brings in three novel contributions: (1) to take
advantage of the temporal information, we represent actions
as time series and compare them using the Global Alignment
(GA) kernel [3], (2) to find a better balance between efficiency
and effectiveness, we propose a cascaded approach that em-
ploys both aggregated and frame level information, and (3) to
improve time series comparisons with the GA kernel, we in-
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troduce a novel feature selection method for sparse multivari-
ate time series.

Since a large enough ground truth based on a cultural
video collection was not yet available for evaluation, we
turned to existing benchmarks featuring a similar type of ac-
tions and content. In this work we evaluate our method on
two datasets: Smoking and Drinking [4] and MSR Action II
[5]. For the latter, our evaluation is performed with a cross-
dataset approach: the model is trained on KTH [6] and tested
on MSRII.

In Section 2 we discuss related work and briefly introduce
Dynamic Time Warping and the Global Alignment kernel.
In Section 3 we describe our approach and in Section 4 we
present its experimental validation while Section 5 presents
our conclusions.

2. RELATED WORK

2.1. Action Description and Localisation

Actions are modelled using either global descriptions of
spatio-temporal volumes of the video or sets of local fea-
tures describing spatio-temporal patches. With local features,
modelling relies on their statistical distribution over a volume
of the video.

Local features describing the dynamics of video patches
such as trajectory-based features ([7]) are designed to de-
scribe both the trajectories and the spatial neighbourhoods
of salient points. These descriptors are based on local shape
(histogram of gradients, HoG), optical flow (histogram of op-
tical flow, HoF) and optical flow gradient (motion boundary
histogram, MBH [8]). The distribution of the local features
for each frame is usually represented by a Bag of Visual
Words (BoVW) histogram.

Gaidon et al.[1] use a sequential model of the action vol-
ume in which a soft ordering between ‘meaningful temporal
parts’ is imposed. Klaser et al.[9] put forward a two stage ap-
proach for localizing human actions. First, a person detector
(fast linear SVM) allows to filter out uninteresting windows.
Second, an action detector is learned using HoG-Track de-
scriptions and applied to improve the detection performance
of the first stage. Oneata et al.[10] achieve state of the art
results for temporal localisation by using Fisher Vectors to
describe the distribution of trajectory features per frame.



Fig. 1. Sample from the “Drinking and Smoking” dataset. Variability (left to right) of viewpoints (side, front, oblique view), of
action ‘size’ as proportion of frame (medium, high, low) and of action length (50, 48 and 77 frames).

In [11] the authors use Branch and Bound (B&B) search
to locate actions, iterating through all interesting detection
volumes one by one. Scoring is based on the mutual infor-
mation between the bag of STIP features in the sub-volume
and the training set features, thus requiring the computation
of nearest neighbours in feature space. [12] proposes a fast
random forest scoring method that removes the need of the
costly nearest neighbour search.

2.2. Temporal matching for action detection

The least expensive methods for comparing time series rely
on temporal summarisation, either by averaging or by ex-
tracting compact descriptors of dynamic behaviour. However,
temporal averaging loses potentially important information
regarding both relative durations and temporal ordering.

Dynamic Time Warping (DTW, [13]) is a method for
matching two time series that takes temporal ordering into
account but is tolerant to temporal deformations. Let us con-
sider two time series, Q and X , each being an ordered list
Q = q1,q2, ...qM , X = x1,x2, ...xN of n-dimensional
vectors qi and xj . DTW finds the best warping path W ∗ ∈ A
(the set of all possible warping paths), W ∗ = w1, w2, ..., wK

where wk = (i, j) between Q and X such that the total cost
of the match is minimized, with respect to a cost function c:
DTW (Q,X) = minW

∑|W |
k=1 c(wk). While DTW cannot be

directly employed to build a positive definite kernel for time
series classification with SVM, Cuturi et al.[3] propose to
remove the min calculation and replace it with a summation
over all the paths. They show that the exponentiation of the
soft-minimum over the summation gives a positive definite
kernel, the Global Alignment (GA) kernel (eq. 1), when the
ground cost function c is the L2 distance.

kGA(Q,X) =
∑
W∈A

exp

−
|W |∑
k=1

c(wk)

 (1)

3. CASCADED DETECTION APPROACH

We consider that order at the frame level is important for the
detection and localisation of the intermediate level actions we
focus on. Comparisons between the time series describing
videos should be robust to variations in speed while being
discriminant with respect to the order of movements. This

naturally leads us to use the GA kernel, which, however, is
computationally expensive. Since we are interested in both
the quality and the scalability of action detection, we propose
a two level cascade where the inexpensive first level serves to
filter out a maximum of irrelevant video segments. The more
expensive second level, using the GA kernel, only processes
what the first level considers as potentially relevant. To fur-
ther improve the quality and speed of detection with the GA
kernel, we also introduce a feature selection method adapted
to sparse multidimensional time series.

For both stages of the cascade we employ sliding win-
dows. Detectors are applied to fixed-size windows of L = 30
frames sampled every s = 5 frames. The cascade classifies
the windows as Positive (containing the action) or Negative.
In a final post-processing stage, overlapping positive detec-
tions are merged and their final score is computed. We pro-
vide below a more detailed description of the approach. Note
that in [4] and [14] multiple window lengths of up to 120
frames are employed, which increases computation time. We
found that with our method the use of multiple window sizes
did not improve results.

3.1. Video time series description

To describe video content for action detection and localisation
we follow [15]: points are sampled on a regular grid in each
frame and tracked across 15 frames. Tracking is done by mo-
tion estimation between consecutive frames, based on the op-
tical flow. The trajectory of a point consists of the coordinates
of the point in consecutive frames. A “tracklet” description is
built by concatenating three features, HoG, HoF and MBH,
computed in patches around the trajectory points, which re-
sults in 396-dimensional descriptors. We quantize these de-
scriptors using K-means into a visual dictionary W of 4,000
words and compute a L1 normalized BoVW histogram for
each frame. These sparse vectors, one for each video frame,
constitute a high-dimensional time series description of the
video. Below, sequence refers to any segment, or subseries,
of a tracklet BoVW time series, while window refers to a se-
quence of L = 30 frames.

3.2. Model learning

We employ SVM-based detectors at both levels of the cas-
cade. SVM parameters are optimized through adaptive grid



search, using either a dedicated validation set or cross-
validation, with Average Precision as the performance cri-
terion. Detectors at both stages of the cascade are trained
following a One-vs-All scheme. For each action class, an
equal number of positive and negative windows are extracted
from the training set. Negative examples are sampled from
background windows and from the windows corresponding
to the other classes.

3.3. Cascade construction and optimization

First stage. The first stage of the cascade has to filter out a
maximum of windows that are not likely to contain the action
of interest. It is directly applied on all the windows extracted
from the videos in which we aim to locate actions. For the first
stage, a window is described by the renormalised sum of the
BOVW histograms of all its frames (denoted below X(agg)).
The first stage has to decide whether a window is relevant (to
be passed to the second level) or should be ignored. The de-
cision is taken according to the value of the SVM decision
function: relevant iff f1(X(agg)) > τ1. For the first stage,
the SVM classifiers employ the Histogram Intersection (HI)
kernel: kHI(Q,X) =

∑|W|
i=1 min(Q

(agg)
i , X

(agg)
i ). The de-

cision threshold τ1 is adjusted so as to minimise the number
of false negatives.
Second stage. The second stage classifies windows as Pos-
itive or Negative. It is only applied to the windows that are
considered relevant by the first stage of the cascade. For the
second stage, a window is described as the time series of
BOVW histograms of all its frames (denoted below X(ts)).
The second stage employs SVM with the GA kernel (eq. 1).
A sequence X(ts) is Positive iff f2(X(ts)) > τ2, where f2 is
the decision function of the second stage SVM. We employed
τ2 = 0. The final score of positive windows is f2.
Cascade optimization. The first stage should filter out a
maximum of irrelevant windows in order to reduce overall
detection cost, while keeping recall as high as possible. In
the following we call coverage the ratio of windows that are
found relevant by the first stage and, thus, sent to the second
stage. Higher values of the decision threshold τ1 reduce the
coverage (thus diminishing computation time). But the num-
ber of false negatives also increases with τ1. In this work, re-
call maximisation was the only criterion employed for select-
ing τ1. When the scalability requirements are important an
optimal trade-off between maximal recall and minimal value
of coverage has to be found. Note that, for each class, τ1 is
optimized on a drawn out validation set.
Post-processing. A sliding window approach for detection
can lead to multiple overlapping positive windows. To obtain
the final detection sequences all positive windows overlap-
ping by more than τmerge = 50% are merged by using the
union of their bounds. The resulting detection sequence is
assigned the sum of scores of the windows.

3.4. Feature selection for frame alignment

Videos usually contain background motion in addition to the
actions of interest, tracklet features are noisy and spurious
trajectories are abundant. Many of the features (visual words)
describing video frames will then act as noise. Furthermore,
the GA kernel employs a summation over all the warping
paths, using the L2 distance between frames as an atomic dis-
similarity measure (eq. 1). Consequently, the use of all the
features may strongly impair the discrimination ability of the
GA kernel. It is then important to use feature selection in the
second stage prior to the application of the GA kernel. This
also has a positive impact on the computation cost.

Feature selection methods following the filter approach,
like mRMR [16], aim to maximise the mutual information
between the selected features and the classes, while minimis-
ing feature redundancy. Such methods retain just as well fea-
tures (visual words) that are present in the positive examples
and absent from the negative ones as features that are present
in the negative examples and absent from the positive ones.
However, the negative examples for one class include not only
examples from the other classes but also ‘background’ se-
quences, i.e. video sequences not showing any of the actions.
Such background sequences from the training data are not
representative for other videos. Consequently, features that
are present in such sequences and absent from the positive
examples will act as noise.

We introduce here a feature selection method that takes
this issue into account and also considers the fact that we com-
pare sequences of vectors rather than simple vectors. More
formally, a feature set F is considered present in a sequence
x = x1, . . . , xL if all the frames in the sequence contain
at least one feature of the set. A feature set F is consid-
ered absent if at least one frame does not contain any feature
from the set. We aim to find a set of features (visual words)
that is (1) maximally present in the positive examples P , and
(2) maximally absent from the negative examples N . Pres-
ence in the positive examples is measured by P+(F) in eq. 2
and absence from the negative examples by A−(F) in eq. 3.
We use greedy search to jointly maximize these two criteria.
We call this method Presence in Positives and Absence from
Negatives (PPAN).

P+(F) =
1

|P|
∑
x∈P

L∏
i=1

1

(∑
w∈F

xiw

)
(2)

A−(F) =
1

|N |
∑
x∈N

[
1− 1

(
L∏

i=1

∑
w∈F

xiw

)]
(3)

In eq. 2 and 3, xiw is the value of word w at time i in the
BoVW sequence x and 1(x) = {1 if x > 0, 0 otherwise}.
These criteria can be extended to other feature representa-
tions. The algorithm stops when the selected features are



D S C W B
Windows with action 5% 7% 9% 12% 8%

Coverage 21% 70% 48% 35% 46%
Nb. 2nd stage features 150 150 50 30 30
Windows with features 93% 89% 83% 37% 72%
Windows for 2nd stage 20% 62% 40% 13% 33%

Table 1. Key figures for the cascade on the test sets of the
Smoking and Drinking and MSR Action II datasets

present in 80% of the positive examples or an upper limit is
reached for this presence. Preliminary experiments allowed
to validate this criterion.

4. EXPERIMENTAL EVALUATION

Datasets. The “Smoking and Drinking” dataset [4] (3
hours) consists of three videos : 2 feature films, “Coffee
and Cigarettes” (2002) and “Sea of Love” (1989), and one
video consisting solely of drinking sequences. It is split
into a training set, a validation set and a testing set. For the
Drinking action there are 106 training, 16 validation and 38
test sequences. For the Smoking action there are 78 train-
ing, 12 validation and 42 test sequences. The “MSR Action
Dataset II” [5] has one hour of footage split into 54 videos
with cluttered background. It contains three actions selected
among those of the KTH dataset [6]: Boxing (81 instances),
[hand]Clapping (51) and [hand]Waving (71). Training is
done using sequences extracted from KTH (100 videos per
action).

Evaluation metrics. Following the recent literature, ac-
tion localisation is evaluated like a retrieval problem: we con-
sider all detection windows with positive scores as results and
we sort the windows by their score. This allows to obtain
precision/recall curves and to compute the Average Precision
(AP) in order to characterize the detection performance.

A detection X is considered to be a ”true positive” if the
Jaccard coefficient J (X,G) = |X ∩G|/|X ∪G| between it
and a positive ground truth window G is greater than 20%.

We first discuss the impact of the first stage and of fea-
ture selection, giving figures in Table 1. The first row of Ta-
ble 1 characterizes the datasets: we can say they are relatively
‘dense’, i.e. the proportion of ground truth windows contain-
ing the action of interest is high. The percentage of windows
needing further examination after the first stage (coverage) is
given in the second row of the table. We note that the filter-
ing power of the first stage was highest on Drinking (20%)
and is on average of 44%. On Smoking and Drinking the first
stage decision threshold τ1 was selected to maximise recall.
On MSRII, since no validation split is provided, τ1 was set to
the average first stage decision value. On less ‘dense’ datasets
and with a joint optimisation of coverage and recall, we ex-

Method Drinking Smoking
Gaidon et al.[1] 57% 31%
Klaser et al.[9] 59% 24%

Oneata et al.[10] 64% 50%
AP of our method 65.5% 45.1%
Search time (ours) 178 s 240 s

Table 2. Performance comparison on Smoking and Drinking

Method Clapping Waving Boxing
Cao et al.[17] 13.1% 36.7% 17.5%

B&B Search [12] 23.9% 43.0% 30.3%
Max Subarray [18] 36.1% 54.1% 31.7%
AP of our method 39.7% 55.0% 39.6%
Search time (ours) 78s average

Table 3. Performance comparison on MSR Action II

pect coverage to be much lower. Feature selection strongly
reduces the number of features, from 4,000 to 30-150. This
significantly accelerates the second stage of the cascade since
the computation of the GA kernel has a complexity of O(L2)
(L is the window length). As a side effect of our feature selec-
tion method, in part of the windows sent to the second stage
none of the selected features is present. These windows can
thus be discarded. Row ‘Windows with features’ in Table 1
shows the ratio of windows still containing the selected fea-
tures. Row ‘Windows for 2nd stage’ (product between ‘Cov-
erage’ and ‘Windows with features’) shows how many win-
dows are actually processed by the second stage of the cas-
cade. In the experiments reported here, filtering and feature
selection together make the cost of the second stage roughly
equal to the cost of the first one.

Table 2 and Table 3 show how our results compare to the
state of the art on Drinking and Smoking and respectively on
MSR Action II. We improve AP for all actions except Smok-
ing. The better results obtained in [10] for Smoking can prob-
ably be explained by the better description quality of Fisher
Vectors (FV) compared to sparse BoVW.

5. CONCLUSION

In this paper we presented an approach for localising inter-
mediate level actions in videos. The method is designed for
processing large volumes of data. We improve upon the state
of the art in two ways: by using a GA kernel for sequence
comparison, considering that frame order is important for ac-
tion detection, and by devising a two-stage cascaded approach
that allows to achieve fast and accurate retrieval of actions due
to pre-filtering and feature selection. We have also shown that
the cascade provides better results than both the use of the GA
kernel alone or of temporal summarisation alone.
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